?IGBT電源模塊?是一種由絕緣柵雙極型晶體管(IGBT)構成的功率模塊。IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優(yōu)點。GTR飽和壓降低,載流密度大,但驅動電流較大;MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。因此因靜電而導致柵極擊穿是IGBT失效的常見原因之一。崇明區(qū)銷售IGBT模塊銷售價格表1 IGBT...
為了抑制n+pn-寄生晶體管的工作IGBT采用盡量縮小p+n-p晶體管的電流放大系數(shù)α作為解決閉鎖的措施。具體地來說,p+n-p的電流放大系數(shù)α設計為0.5以下。 IGBT的閉鎖電流IL為額定電流(直流)的3倍以上。IGBT的驅動原理與電力MOSFET基本相同,通斷由柵射極電壓uGE決定。 [2]導通IGBT硅片的結構與功率MOSFET 的結構十分相似,主要差異是IGBT增加了P+ 基片和一個N+ 緩沖層(NPT-非穿通-IGBT技術沒有增加這個部分),其中一個MOSFET驅動兩個雙極器件。在溫度發(fā)生急劇變化的場所IGBT模塊表面可能有結露水的現(xiàn)象,因此IGBT模塊應放在溫度變化較小的地方;長...
常適合應用于直流電壓為600V及以上的變流系統(tǒng)如交流電機、變頻器、開關電源、照明電路、牽引傳動等領域。 圖1所示為一個N 溝道增強型絕緣柵雙極晶體管結構, N+ 區(qū)稱為源區(qū),附于其上的電極稱為源極。N+ 區(qū)稱為漏區(qū)。器件的控制區(qū)為柵區(qū),附于其上的電極稱為柵極。溝道在緊靠柵區(qū)邊界形成。在漏、源之間的P 型區(qū)(包括P+ 和P 一區(qū))(溝道在該區(qū)域形成),稱為亞溝道區(qū)( Subchannel region )。而在漏區(qū)另一側的P+ 區(qū)稱為漏注入?yún)^(qū)( Drain injector ),它是IGBT 特有的功能區(qū),與漏區(qū)和亞溝道區(qū)一起形成PNP 雙極晶體管,起發(fā)射極的作用,向漏極注入空穴,進行導電調制,...
IGBT 的開關作用是通過加正向柵極電壓形成溝道,給PNP 晶體管提供基極電流,使IGBT 導通。反之,加反向門極電壓消除溝道,流過反向基極電流,使IGBT 關斷。IGBT 的驅動方法和MOSFET 基本相同,只需控制輸入極N一溝道MOSFET ,所以具有高輸入阻抗特性。當MOSFET 的溝道形成后,從P+ 基極注入到N 一層的空穴(少子),對N 一層進行電導調制,減小N 一層的電阻,使IGBT 在高電壓時,也具有低的通態(tài)電壓。 [1] [4]IGBT 的靜態(tài)特性主要有伏安特性、轉移特性和開關特性。由于IGBT模塊為MOSFET結構,IGBT的柵極通過一層氧化膜與發(fā)射極實現(xiàn)電隔離。楊浦區(qū)如何I...
鑒于尾流與少子的重組有關,尾流的電流值應與芯片的溫度、IC 和VCE密切相關的空穴移動性有密切的關系。因此,根據(jù)所達到的溫度,降低這種作用在終端設備設計上的電流的不理想效應是可行的,尾流特性與VCE、IC和 TC有關。柵射極間施加反壓或不加信號時,MOSFET內的溝道消失,晶體管的基極電流被切斷,IGBT關斷。 [2]反向阻斷當集電極被施加一個反向電壓時,J1 就會受到反向偏壓控制,耗盡層則會向N-區(qū)擴展。因過多地降低這個層面的厚度,將無法取得一個有效的阻斷能力,所以,這個機制十分重要。另一方面,如果過大地增加這個區(qū)域尺寸,就會連續(xù)地提高壓降。 [2]正向阻斷柵射極間施加反壓或不加信號時,MO...
IGBT的應用范圍一般都在耐壓600V以上、電流10A以上、頻率為1kHz以上的區(qū)域。多使用在工業(yè)用電機、民用小容量電機、變換器(逆變器)、照相機的頻閃觀測器、感應加熱(InductionHeating)電飯鍋等領域。根據(jù)封裝的不同,IGBT大致分為兩種類型,一種是模壓樹脂密封的三端單體封裝型,從TO-3P到小型表面貼裝都已形成系列。另一種是把IGBT與FWD (FleeWheelDiode)成對地(2或6組)封裝起來的模塊型,主要應用在工業(yè)上。模塊的類型根據(jù)用途的不同,分為多種形狀及封裝方式,都已形成系列化。這時,如果集電極與發(fā)射極間存在高電壓,則有可能使IGBT發(fā)熱及至損壞。靜安區(qū)質量IG...
門極輸入電容Cies 由CGE 和CGC 來表示,它是計算IGBT 驅動器電路所需輸出功率的關鍵參數(shù)。該電容幾乎不受溫度影響,但與IGBT集電極-發(fā)射極電壓VCE 的電壓有密切聯(lián)系。在IGBT數(shù)據(jù)手冊中給出的電容Cies 的值,在實際電路應用中不是一個特別有用的參數(shù),因為它是通過電橋測得的,在測量電路中,加在集電極上C 的電壓一般只有25V(有些廠家為10V),在這種測量條件下,所測得的結電容要比VCE=600V 時要大一些(如圖2)。由于門極的測量電壓太低(VGE=0V )而不是門極的門檻電壓,在實際開關中存在的米勒效應(Miller 效應)在測量中也沒有被包括在內,在實際使用中的門極電容C...
當晶閘管全部導通時,靜態(tài)閂鎖出現(xiàn)。只在關斷時才會出現(xiàn)動態(tài)閂鎖。這一特殊現(xiàn)象嚴重地限制了安全操作區(qū)。為防止寄生NPN和PNP晶體管的有害現(xiàn)象,有必要采取以下措施:一是防止NPN部分接通,分別改變布局和摻雜級別。二是降低NPN和PNP晶體管的總電流增益。此外,閂鎖電流對PNP和NPN器件的電流增益有一定的影響,因此,它與結溫的關系也非常密切;在結溫和增益提高的情況下,P基區(qū)的電阻率會升高,破壞了整體特性。因此,器件制造商必須注意將集電極最大電流值與閂鎖電流之間保持一定的比例,通常比例為1:5。 [2]當柵極和發(fā)射極短接并在集電極端子施加一個正電壓時,P/NJ3結受反向電壓控制。奉賢區(qū)進口IGBT模...
IGBT功率模塊是以絕緣柵雙極型晶體管(IGBT)構成的功率模塊。由于IGBT模塊為MOSFET結構,IGBT的柵極通過一層氧化膜與發(fā)射極實現(xiàn)電隔離,具有出色的器件性能。廣泛應用于伺服電機、變頻器、變頻家電等領域。IGBT功率模塊是電壓型控制,輸入阻抗大,驅動功率小,控制電路簡單,開關損耗小,通斷速度快,工作頻率高,元件容量大等優(yōu)點。實質是個復合功率器件,它集雙極型功率晶體管和功率MOSFET的優(yōu)點于一體化。又因先進的加工技術使它通態(tài)飽和電壓低,開關頻率高(可達20khz),這兩點非常顯著的特性,**近西門子公司又推出低飽和壓降(2.2v)的npt-IGBT性能更佳,相繼東芝、富士、ir,摩托...
90年代中期,溝槽柵結構又返回到一種新概念的IGBT,它是采用從大規(guī)模集成(LSI)工藝借鑒來的硅干法刻蝕技術實現(xiàn)的新刻蝕工藝,但仍然是穿通(PT)型芯片結構。[4]在這種溝槽結構中,實現(xiàn)了在通態(tài)電壓和關斷時間之間折衷的更重要的改進。硅芯片的重直結構也得到了急劇的轉變,先是采用非穿通(NPT)結構,繼而變化成弱穿通(LPT)結構,這就使安全工作區(qū)(SOA)得到同表面柵結構演變類似的改善。這次從穿通(PT)型技術先進到非穿通(NPT)型技術,是**基本的,也是很重大的概念變化。這就是:穿通(PT)技術會有比較高的載流子注入系數(shù),而由于它要求對少數(shù)載流子壽命進行控制致使其輸運效率變壞。在柵極連線中...
1979年,MOS柵功率開關器件作為IGBT概念的先驅即已被介紹到世間。這種器件表現(xiàn)為一個類晶閘管的結構(P-N-P-N四層組成),其特點是通過強堿濕法刻蝕工藝形成了V形槽柵。80年代初期,用于功率MOSFET制造技術的DMOS(雙擴散形成的金屬-氧化物-半導體)工藝被采用到IGBT中來。[2]在那個時候,硅芯片的結構是一種較厚的NPT(非穿通)型設計。后來,通過采用PT(穿通)型結構的方法得到了在參數(shù)折衷方面的一個***改進,這是隨著硅片上外延的技術進步,以及采用對應給定阻斷電壓所設計的n+緩沖層而進展的[3]。幾年當中,這種在采用PT設計的外延片上制備的DMOS平面柵結構,其設計規(guī)則從5微...
大電流高電壓的IGBT已模塊化,它的驅動電路除上面介紹的由分立元件構成之外,已制造出集成化的IGBT**驅動電路。其性能更好,整機的可靠性更高及體積更小。選擇IGBT模塊的電壓規(guī)格與所使用裝置的輸入電源即試電電源電壓緊密相關。其相互關系見下表。使用中當IGBT模塊集電極電流增大時,所產(chǎn)生的額定損耗亦變大。同時,開關損耗增大,使原件發(fā)熱加劇,因此,選用IGBT模塊時額定電流應大于負載電流。特別是用作高頻開關時,由于開關損耗增大,發(fā)熱加劇,選用時應該降等使用。為了減少接觸熱阻,在散熱器與IGBT模塊間涂抹導熱硅脂。崇明區(qū)如何IGBT模塊供應商常適合應用于直流電壓為600V及以上的變流系統(tǒng)如交流電機...
IGBT的觸發(fā)和關斷要求給其柵極和基極之間加上正向電壓和負向電壓,柵極電壓可由不同的驅動電路產(chǎn)生。當選擇這些驅動電路時,必須基于以下的參數(shù)來進行:器件關斷偏置的要求、柵極電荷的要求、耐固性要求和電源的情況。因為IGBT柵極- 發(fā)射極阻抗大,故可使用MOSFET驅動技術進行觸發(fā),不過由于IGBT的輸入電容較MOSFET為大,故IGBT的關斷偏壓應該比許多MOSFET驅動電路提供的偏壓更高。IGBT的開關速度低于MOSFET,但明顯高于GTR。IGBT在關斷時不需要負柵壓來減少關斷時間,但關斷時間隨柵極和發(fā)射極并聯(lián)電阻的增加而增加。IGBT的開啟電壓約3~4V,和MOSFET相當。IGBT導通時的...
IGBT是強電流、高壓應用和快速終端設備用垂直功率MOSFET的自然進化。MOSFET由于實現(xiàn)一個較高的擊穿電壓BVDSS需要一個源漏通道,而這個通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點。雖然***一代功率MOSFET器件大幅度改進了RDS(on)特性,但是在高電平時,功率導通損耗仍然要比IGBT 高出很多。IGBT較低的壓降,轉換成一個低VCE(sat)的能力,以及IGBT的結構,與同一個標準雙極器件相比,可支持更高電流密度,并簡化 IGBT驅動器的原理圖。 [1]為了減少接觸熱阻,在散熱器與IGBT模塊...
fsw max. : 比較高開關頻率IoutAV :單路的平均電流QG : 門極電壓差時的 IGBT門極總電荷RG extern : IGBT 外部的門極電阻RG intern : IGBT 芯片內部的門極電阻但是實際上在很多情況下,數(shù)據(jù)手冊中這個門極電荷參數(shù)沒有給出,門極電壓在上升過程中的充電過程也沒有描述。這時候比較好是按照 IEC 60747-9-2001 - Semiconductor devices -Discrete devices - Part 9: Insulated-gate bipolar transistors (IGBTs)所給出的測試方法測量出開通能量E,然后再計算出...
基片的應用在管體的P+和N+ 區(qū)之間創(chuàng)建了一個J1結。當正柵偏壓使柵極下面反演P基區(qū)時,一個N溝道形成,同時出現(xiàn)一個電子流,并完全按照功率MOSFET的方式產(chǎn)生一股電流。如果這個電子流產(chǎn)生的電壓在0.7V范圍內,那么,J1將處于正向偏壓,一些空穴注入N-區(qū)內,并調整陰陽極之間的電阻率,這種方式降低了功率導通的總損耗,并啟動了第二個電荷流。***的結果是,在半導體層次內臨時出現(xiàn)兩種不同的電流拓撲:一個電子流(MOSFET 電流);空穴電流(雙極)。 [4]uGE大于開啟電壓UGE(th)時,MOSFET內形成溝道,為晶體管提供基極電流,IGBT導通。 [2]一般保存IGBT模塊的場所,應保持常溫...
絕緣柵雙極型晶體管(IGBT)在***的電力電子領域中已經(jīng)得到廣泛的應用,在實際使用中除IGBT自身外,IGBT 驅動器的作用對整個換流系統(tǒng)來說同樣至關重要。驅動器的選擇及輸出功率的計算決定了換流系統(tǒng)的可靠性。驅動器功率不足或選擇錯誤可能會直接導致 IGBT 和驅動器損壞。以下總結了一些關于IGBT驅動器輸出性能的計算方法以供選型時參考。圖2IGBT 的開關特性主要取決于IGBT的門極電荷及內部和外部的電阻。圖1是IGBT 門極電容分布示意圖,其中CGE 是柵極-發(fā)射極電容、CCE 是集電極-發(fā)射極電容、CGC 是柵極-集電極電容或稱米勒電容(Miller Capacitor)。盡量遠離有腐蝕...
IGBT 的開關特性是指漏極電流與漏源電壓之間的關系。IGBT 處于導通態(tài)時,由于它的PNP 晶體管為寬基區(qū)晶體管,所以其B 值極低。盡管等效電路為達林頓結構,但流過MOSFET 的電流成為IGBT 總電流的主要部分。由于N+ 區(qū)存在電導調制效應,所以IGBT 的通態(tài)壓降小,耐壓1000V的IGBT 通態(tài)壓降為2 ~ 3V 。IGBT 處于斷態(tài)時,只有很小的泄漏電流存在。 [1]動態(tài)特性IGBT 在開通過程中,大部分時間是作為MOSFET 來運行的,只是在漏源電壓Uds 下降過程后期, PNP 晶體管由放大區(qū)至飽和,又增加了一段延遲時間。td(on) 為開通延遲時間, tri 為電流上升時間。...
2)能向IGBT提供足夠的反向柵壓。在IGBT關斷期間,由于電路中其他部分的工作,會在柵極電路中產(chǎn)生一些高頻振蕩信號,這些信號輕則會使本該截止的IGBT處于微通狀態(tài),增加管子的功耗。重則將使調壓電路處于短路直通狀態(tài)。因此,比較好給處于截止狀態(tài)的IGBT加一反向柵壓(幅值一般為5~15 V),使IGBT在柵極出現(xiàn)開關噪聲時仍能可靠截止。3)具有柵極電壓限幅電路,保護柵極不被擊穿。IGBT柵極極限電壓一般為+20 V,驅動信號超出此范圍就可能破壞柵極。當集電極被施加一個反向電壓時,J1 就會受到反向偏壓控制,耗盡層則會向N-區(qū)擴展。楊浦區(qū)品牌IGBT模塊品牌Q 為柵極電荷,可參考IGBT模塊參數(shù)手...
測量靜態(tài)測量:把萬用表放在乘100檔,測量黑表筆接1端子、紅表筆接2端子,顯示電阻應為無窮大; 表筆對調,顯示電阻應在400歐左右.用同樣的方法,測量黑表筆接3端子、紅表筆接1端子, 顯示電阻應為無窮大;表筆對調,顯示電阻應在400歐左右.若符合上述情況表明此IGBT的兩個單元沒有明顯的故障. 動態(tài)測試: 把萬用表的檔位放在乘10K檔,用黑表筆接4端子,紅表筆接5端子,此時黑表筆接3端子紅表筆接1端子, 此時電阻應為300-400歐,把表筆對調也有大約300-400歐的電阻表明此IGBT單元是完好的. 用同樣的方法測試1、2端子間的IGBT,若符合上述的情況表明該IGBT也是完好的。 當集電極...
Q 為柵極電荷,可參考IGBT模塊參數(shù)手冊。例如,常見IGBT驅動器(如TX-KA101)輸出正電壓15V,負電壓-9V,則U=24V,假設 F=10KHz,Q=2.8uC可計算出 P=0.67w ,柵極電阻應選取2W電阻,或2個1W電阻并聯(lián)。三、設置柵極電阻的其他注意事項1、盡量減小柵極回路的電感阻抗,具體的措施有:a)驅動器靠近IGBT減小引線長度;b) 驅動的柵射極引線絞合,并且不要用過粗的線;c) 線路板上的 2 根驅動線的距離盡量靠近;d) 柵極電阻使用無感電阻;e) 如果是有感電阻,可以用幾個并聯(lián)以減小電感。2、IGBT 開通和關斷選取不同的柵極電阻當集電極被施加一個反向電壓時,J...
?IGBT電源模塊?是一種由絕緣柵雙極型晶體管(IGBT)構成的功率模塊。IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優(yōu)點。GTR飽和壓降低,載流密度大,但驅動電流較大;MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。虹口區(qū)如何IGBT模塊費用當晶閘管全部導...
通常為達到更好的驅動效果,IGBT開通和關斷可以采取不同的驅動速度,分別選取 Rgon和Rgoff(也稱 Rg+ 和 Rg- )往往是很必要的。IGBT驅動器有些是開通和關斷分別輸出控制,只要分別接上Rgon和Rgoff就可以了。有些驅動器只有一個輸出端,這就要在原來的Rg 上再并聯(lián)一個電阻和二極管的串聯(lián)網(wǎng)絡,用以調節(jié)2個方向的驅動速度。3、在IGBT的柵射極間接上Rge=10-100K 電阻,防止在未接驅動引線的情況下,偶然加主電高壓,通過米勒電容燒毀IGBT。所以用戶比較好再在IGBT的柵射極或MOSFET柵源間加裝Rge。IGBT的開關速度低于MOSFET,但明顯高于GTR。崇明區(qū)哪里I...
?IGBT電源模塊?是一種由絕緣柵雙極型晶體管(IGBT)構成的功率模塊。IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優(yōu)點。GTR飽和壓降低,載流密度大,但驅動電流較大;MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。在用導電材料連接模塊驅動端子時,在配線未接好之前請先不要接上模塊;嘉定區(qū)如何IGBT模塊供應商表1...
?IGBT電源模塊?是一種由絕緣柵雙極型晶體管(IGBT)構成的功率模塊。IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優(yōu)點。GTR飽和壓降低,載流密度大,但驅動電流較大;MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。IGBT的開關速度低于MOSFET,但明顯高于GTR。虹口區(qū)銷售IGBT模塊設計為了抑制n+pn-...
?IGBT驅動電路是一種復合全控型電壓驅動式功率的半導體器件IGBT驅動電路是驅動IGBT模塊以能讓其正常工作,并同時對其進行保護的電路。IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。非常適合應用于直流電壓為600V及以上的變流系統(tǒng)如交流電機、變頻器、開關電源、照明電路、牽引傳動等領域。圖1圖1所示為一個N 溝道增強型絕緣柵雙極晶體管結構, N+ 區(qū)稱為源區(qū),附于其上的電極稱為源極。N+ 區(qū)稱為漏區(qū)。器件的控制區(qū)為柵區(qū),附于其上的電極稱為柵極。溝道在緊靠柵區(qū)邊界形成。在漏、源之間的P 型區(qū)(包括P+ 和P 一區(qū))(溝道在該區(qū)域形成),稱為亞溝道區(qū)( Subchannel regio...
確定IGBT 的門極電荷對于設計一個驅動器來說,**重要的參數(shù)是門極電荷QG(門極電壓差時的IGBT 門極總電荷),如果在IGBT 數(shù)據(jù)手冊中能夠找到這個參數(shù),那么我們就可以運用公式計算出:門極驅動能量 E = QG · UGE = QG · [ VG(on) - VG(off) ]門極驅動功率 PG = E · fSW = QG · [ VG(on) - VG(off) ] · fSW驅動器總功率 P = PG + PS(驅動器的功耗)平均輸出電流 IoutAV = PG / ΔUGE = QG · fSW比較高開關頻率 fSW max. = IoutAV(mA) / QG(μC)峰值電流I...
導通壓降電導調制效應使電阻RN減小,使通態(tài)壓降小。關斷當在柵極施加一個負偏壓或柵壓低于門限值時,溝道被禁止,沒有空穴注入N-區(qū)內。在任何情況下,如果MOSFET電流在開關階段迅速下降,集電極電流則逐漸降低,這是因為換向開始后,在N層內還存在少數(shù)的載流子(少子)。這種殘余電流值(尾流)的降低,完全取決于關斷時電荷的密度,而密度又與幾種因素有關,如摻雜質的數(shù)量和拓撲,層次厚度和溫度。少子的衰減使集電極電流具有特征尾流波形,集電極電流引起以下問題:功耗升高;交叉導通問題,特別是在使用續(xù)流二極管的設備上,問題更加明顯。在安裝或更換IGBT模塊時,應十分重視IGBT模塊與散熱片的接觸面狀態(tài)和擰緊程度。普...
· 驅動器必須能夠提供所需的門極平均電流IoutAV 及門極驅動功率PG。驅動器的比較大平均輸出電流必須大于計算值?!?驅動器的輸出峰值電流IoutPEAK 必須大于等于計算得到的比較大峰值電流。· 驅動器的比較大輸出門極電容量必須能夠提供所需的門極電荷以對IGBT 的門極充放電。在POWER-SEM 驅動器的數(shù)據(jù)表中,給出了每脈沖的比較大輸出電荷,該值在選擇驅動器時必須要考慮。另外在IGBT驅動器選擇中還應該注意的參數(shù)包括絕緣電壓Visol IO 和dv/dt 能力。MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。青浦區(qū)品牌IGBT模塊聯(lián)系人通常為達到更好的驅動效果,IGBT...
IGBT是先進的第三代功率模塊,工作頻率1-20khz,主要應用在變頻器的主回路逆變器及一切逆變電路,即dc/ac變換中。例電動汽車、伺服控制器、UPS、開關電源、斬波電源、無軌電車等。問世迄今有十年多歷史,幾乎已替代一切其它功率器件,例SCR、GTO、GTR、MOSFET、雙極型達林頓管等如今功率可高達1MW的低頻應用中,單個元件電壓可達4.0KV(pt結構)一6.5KV(npt結構),電流可達1.5KA,是較為理想的功率模塊。 [1]a,柵極與任何導電區(qū)要絕緣,以免產(chǎn)生靜電而擊穿,所以包裝時將g極和e極之間要有導電泡沫塑料,將它短接。裝配時切不可用手指直接接觸,直到g極管腳進行長久性連接。...